Soft coded Synapses

A new preprint by Filipovicetal2009* shows that striatal projection neurons (MSNs) receive different amounts of input, dependent on whether they are D2-modulated, and part of the indirect pathway, or D1-modulated, and part of the direct pathway. In particular membrane fluctuations are higher in the D1-modulated neurons (mostly at higher frequencies): they receive both more inhibitory and excitatory input. This also means that they are activated faster.

The open question is: what drives the difference in input? Do they have stronger synapses or more synapses? If the distribution of synaptic strength is indeed a universal, they could have stronger synapses overall (different peak of the distribution), or more synapses (area under the curve).

Assuming that synapses adapt to the level of input they receive, having stronger synapses would be equivalent to being connected to higher frequency neurons; but there would be a difference in terms of fluctuations of input. Weak synapses have low fluctuations of input, while strong synapses, assuming they are sent out from neurons with a higher frequency range, have larger fluctuations in input to the postsynaptic neuron.

It is also possible that the effect results from a higher amount of correlation in synaptic input to D1-modulated neurons than D2-modulated neurons. However, since correlations are an adaptive feature in neural processing, it would be unusual to have an overall higher level of correlation to one of two similar neuronal groups: it would be difficult to maintain concurrently with fluctuations in correlation which are meaningful to processing (attention).

An additional observation is that dopamine depletion reduces the difference between D2- and D1-modulated MSNs. Since membrane fluctuations are due to differences of synaptic input (AMPA and GABA-A driven), but there is only conflicting evidence that D1 receptors modulate these receptors (except NMDA receptors), one would postulate a presynaptic effect. So, possibly the effect is located at indirect pathway, D2-modulated neurons, which receive less input when dopamine is present, and adjust to a lower level of synaptic input. (Alternatively, reduction of D1 activation could result in less NMDA/ AMPA, more GABA-A, i.e. less synaptic input in a D1 dopamine-dependent way.) In the dopamine depleted mouse, both pathways would receive approximately similar input.   Under this hypothesis, it is not primarily differences in structural plasticity which result in different synaptic input levels, but instead a “soft-coded” (dopamine-coded)  difference, which depends on dopamine levels and is realized by presynaptic/postsynaptic dopamine receptors. Further results will clarify this question.

*Thanks to Marko Filipovic for his input. The interpretations are my own.

Egocentric representations for general input

The individual neuron’s state need not be determined only by the inputs received.

(a). It may additionally be seeded with a probability for adaptation that is distributed wrt the graph properties of the neuron (like betweenness centrality, choke points etc.), as well as the neuron’s current intrinsic excitability (IE) (which are related). This seeded probability would correspond to a sensitivity of the neuron to the representation that is produced by the subnetwork. The input representation is transformed by the properties of the subnetwork.

(b). Another way to influence neurons independent of their input is to link them together. This can be done by simulating of neuromodulators (NMs) which influence adaptivity for a subset of neurons within the network. There are then neurons which are linked together and increase or turn on their adaptivity because they share the same NM receptors. Different sets of neurons can become activated and increase their adaptivity, whenever a sufficient level of a NM is reached. An additional learning task is then to identify suitable sets of neurons. For instance, neurons may encode aspects of the input representation that result from additional, i.e. attentional, signals co-occuring with the input.

(c). Finally, both E and I neurons are known to consist of morphologically and genetically distinct types. This opens up additional ways of creating heterogeneous networks from these neuron types and have distinct adaptation rules for them. Some of the neurons may not even be adaptive, or barely adaptive, while others may be adaptive only once, (write once, read-only), or be capable only of upregulation, until they have received their limit. (This applies to synaptic and intrinsic adaptation). Certain neurons may have to follow the idea of unlimited adaptation in both directions in order to make such models viable.

Similar variants in neuron behavior are known from technical applications of ANNs: hyperparameters that link individual parameters into groups (‘weight sharing’) have been used, terms like ‘bypassing’ mean that some neurons do not adjust, only transmit, and ‘gating’ means that neurons may regulate the extent of transmission of a signal (cf. LSTM, ScardapaneSetal2018). Separately, the model ADAM (or ADAMW) has been proposed which computes adaptive learning rates for each neuron and achieves fast convergence.

A neuron-centric biological network model (‘neuronal automaton’) offers a systematic approach to such differences in adaptation. As suggested, biological neurons have different capacities for adaptation and this may extend to their synaptic connections as well. The model would allow to learn different activation functions and different adaptivity for each neuron, helped by linking neurons into groups and using fixed genetic types in the setup of the network. In each specific case the input is represented by the structural and functional constraints of the network and therefore transformed into an internal, egocentric representation.